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1. General 
The vehicle handling performance is directly related to the tyre-road contact.  

The tyres transfer the horizontal and vertical forces acting on the vehicle as a result of 

steering, braking and driving in combination with possible road disturbances or 

external disturbances like aerodynamic forces due to for example cross-wind. 

 

The relationship between vehicle behavour and these tyre-road contact forces depends 

on the specific tyre design, tyre condition variables like slip and tyre load, the road 

surface design, and the actual road surface and weather conditions, see figure 1. Tyre 

design parameters are related to the tyre geometry (width, sidewall height,...), the 

specific tyre brand (manufacturer), the tread pattern design, the structure of the tyre (a 

tyre is built up from different rubber compounds and rubberized fabric or cord acting as 

reinforcement elements, referred to as plies), the amount of wear, etc.  

More wear may result in a higher stiffness and therefore higher contact forces for the 

same slip, with slip referring to the deviation of the tyre condition from free rolling 

conditions (explained more rigorously in the next sections).  

 

 

 

Figure 1.: The tyre-road interface 
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1.1. Effect of tyre ply-design  

One may be familiar with the different performance of bias-ply tyres and radial-ply 

tyres, being a direct result of the different ply-designs of the two tyre types, see figure 

2. 

For a bias-ply tyre, the belt plies cross over at each other at a large angle (in the order 

of 40
o
 with respect to the circumferential direction), and are extended over the 

sidewalls, in contrast to the radial-ply tires with distinction between belt plies (with 

orientation being close to 

circumferential) and radial casing 

plies. Due to these structural 

differences, the tread motion is 

reduced for the radial-ply tyre, and the 

cornering stiffness (‘stiffness against 

cornering’, treated in detail later in this 

chapter) is usually exceeding that for 

the bias-ply tyre.  In figure 3, shear 

stresses in the contact area along the 

tyre width are shown, indicating stress 

concentrations at the tyre shoulders for 

bias-ply tyres, due to interaction of 

tread motion and side wall 

deformation. This contributes to more 

wear. In addition, bias-ply tyres 

experience more dissipation, having a 

positive effect on ride.  

 

 

 

 

 

 

Figure 2.: Structure of bias-ply and radial-ply tyre, from [34] 
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Figure 3.: Transverse shear stress for bias-ply 

and radial-ply tyres, from [20] 
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1.2. Tyre variables  and tyre performance 

Tyre load is related to vehicle mass and axle load distribution, and therefore also to 

loading conditions. Under specific braking, driving or cornering conditions, roll and 

pitch will occur and tyre loads will change, leading to different response of the tyre-

road contact in terms of tyre forces.  There is a dependency of tyre-road contact 

performance on vehicle and tyre forward velocity. Changing the internal tyre pressures 

will result in a modified contact area and consequently modified local normal pressures 

in the contact area. This will affect the local shear stress behaviour, building up the 

horizontal contact forces. 

 

1.3. Road surface parameters 

One may distinguish different road surface design in terms of micro- and macrotexture 

describing the local roughness and adhesion potential, the used materials (asphalt, 

concrete,..), and the composition of the materials (dense asphalt, drain asphalt,..). 

In figure 4, we show some of the effects of the road surface texture on the vehicle and 

tyre performance (from [33]). 

 

The handling characteristics, i.e. the topic of this chapter, is affected by road texture for 

wavelengths between values far less then 1 mm, and in the order of 0.5 until 1 meter. 

Tyre wear is typically a phenomenon related to wavelengths less then 1 cm. Internal 

vehicle noise is arising from large wavelengths (of course also depending on vehicle 

speed). Rolling resistance, discomfort and vehicle wear are most affected by the more 

coarse parts of the road texture as well, and even (discomfort, vehicle wear) by the 

more global vehicle unevenesses.  
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Figure 2.: Functional properties road surface vs. texture wave length 
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Road conditions vary in time due to ageing. Due to road use, there will be road surface 

wear and polishing effects, leading to different friction under similar weather 

conditions. Finally, the weather conditions itself obviously have a strong effect on the 

tyre-road conditions, where one may think of rain, snow, variation of temperature, and 

the impact of rain mixing up with dirt after a long dry period leading to significant 

reduction in road friction.  

 

1.4. Tyre input and output quantities. 

A tyre is schematically shown in figure 5, with indication of al the input and output 

quantities, see also [18]. There are three forces and three moments acting on the tyre: 

 

Fx : braking, driving force 

Fy : lateral (cornering) force  

Fz : tyre load, to carry the vehicle weight  

Mx : Overturning moment 

My : Moment about the wheel axis (driving, braking torque) 

Mz : Self-aligning moment 

 

Most of these forces and moment will 

be explained later in more detail. 

A tyre travels with a horizontal 

velocity V, with components Vx and 

Vy in longitudinal and lateral direction. 

Due to brake or drive torque and 

cornering forces, slip will occur which 

means that the tyre slides with nonzero 

speed over the surface. The 

corresponding slip speeds Vsx and Vsy 

are shown in figure 5 as well. The tyre 

rolls over the surface with an angular 

speed Ω, leading to the so-called 

rolling speed: 

 

er RV .Ω=  

 

with Re being the effective rolling radius of the tyre under free rolling. For a free 

rolling wheel, the rolling speed coincides with Vx, defining the effective rolling radius 

as the ratio between Vx and Ω. 

 

1.4.1.: The effective rolling radius 
The effective rolling radius is not the same as the loaded tyre radius Rl, with the latter 

being defined as the vertical distance between the wheel centre and the horizontal 

surface. A free rolling tyre rotates around a point near the contact patch. For a rigid 

wheel on a flat horizontal surface, this point coincides with the single contact point 

between tyre and road, and the forward speed Vx equals angular speed time (loaded = 

unloaded) radius. 

Fx

Fy

F

Vsx

-Vsy

Vs

Vr

Vx

-Vy

V

FzMz

Ω

Fx

Fy

F

Vsx

-Vsy

Vs

Vr

Vx

-Vy

V

FzMz

Ω

 

Figure 3.: Input and output quantities acting in 

a tyre 
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For a pneumatic tyre, the distance between points at the circumference of the tyre and 

the wheel centre varies from a value close to the unloaded radius just before entering 

the contact area to the same value as the loaded radius just at the projection point of the 

wheel centre on the contact area. At that point, the peripheral velocity of the tread 

(relative to the wheel centre) coincides with the horizontal velocity V of the wheel 

centre. Moving out of the contact area, the tread regains its original length and the 

peripheral velocity returns to Ω.R with R the unloaded radius. As a consequence, the 

spin speed of the wheel with a pneumatic tyre under conditions of free rolling is less 

than that of a rigid wheel and: 

 

RRR el <<  

 

It means that the centre of rotation of the wheel usually lies somewhere below the 

surface. The effective rolling tyre under free rolling also behaves different with varying 

tyre load compared to the loaded tyre radius. A loaded radius behaves almost linear in 

the tyre load Fz, i.e. the tyre behaves as a linear spring in vertical direction. The 

effective rolling radius varies significantly with tyre load. This can be described based 

on empirical fit as follows (see [1]: 

 

].).arctan(..[
00

0_, ρ
ρ

ρ
ρ

ρ EBDRR rollingfreee +−=  

 

with tyre deflection ρ, tyre deflection ρ0 for nominal tyre load Fzo, and fitparameters B, 

D, E which may vary according to: 

 

3 < B < 12  : B stretches the effective tyre characteristic curve along the Fz 

                                                         -axis (ordinate). B large means a large slope at Fz = 0. 

0.2 < D < 0.4  : shift from asymptote at high wheel loads 

0.03 < E < 0.25 : with low values of E for stiff tyres 
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Figure 4.: Effective and loaded tyre radius under conditions of free 

rolling 
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An example of the variation of Rl and Re is shown in figure 6 for B = 10, D = 0.25 and 

E = 0.05. The tyre stiffness is taken as 2.10
5
 N/m. The unloaded radius R is taken as 

0.32 m and we choose Fz0 = 4000 N. We have also varied the parameters to illustrate 

the range of possible effective rolling radius characteristics. 

 

The effective rolling radius turns out to increase with increasing speed and increasing 

inflation pressure. The variation with speed is strongly dependent on the tyre carcass 

structure. 

. 

A radial-ply tyre rolling radius appears to be almost constant for varying speed in 

contrast with the diagonal-ply (bias-ply) tyre. This phenomenon has to do with the 

radial response of the tyre to higher circumferential speeds.   

 

 

2. The rolling tyre. 
Let us discuss the rolling tyre in more 

detail, see figure 7 (see also [20]). With 

the tread entering and moving through the 

contact area, the distance to the wheel 

centre changes from the unloaded radius to 

the loaded radius and back to the unloaded 

radius. With the peripheral speed in the 

contact area corresponding to the effective 

rolling radius in between these values, 

points in the contact area need to catch up 

with this peripheral speed at the both ends 

of the contact area where the distance of 

contact points to the wheel centre exceeds 

Re. As a consequence, one observes 

rearward slip at these parts. With a similar 

argument, the points of the tyre 

circumference are slowed down in speed 

in the centre part of the contact area, 

corresponding to forward slip. Integration 

of the slip over contact area results in the global performance related to the shear stress 

as indicated in figure 7. The peripheral speed with respect to the wheel centre is shown 

in the lowest graph in figure 7, reducing from the unloaded speed Ω.R just before the 

contact area to the speed Ω.Re within the contact area. 

The total longitudinal net force, determined from integrating the shear stress over the 

contact area will be a nonzero, negative force, known as the rolling resistance force. 

This rolling resistance force corresponds to a moment acting around the wheel centre, 

being balanced by the moment resulting from the tyre load. Consequently, the net tyre 

load will have to act along a force line, slightly in front of the wheel centre.  
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Figure 5.: Free rolling tyre 

 



 

 
9 

 

3. The tyre under braking or driving conditions. 
Now consider a tyre under a braking torque, as indicated in figure 8. 

The brake torque My has to be balanced by 

moments due to a brake force –Fx and the tyre 

load Fz.  

The offset of the tyre load in front of the 

wheel centre increases with respect to the free 

rolling tyre. The tyre will experience a slip 

speed of wheel w.r.t. ground, reducing the 

angular speed and therefore increasing the 

effective rolling radius Re. If My is large 

enough, Re,braking will exceed the loaded radius 

.  
The total longitudinal shear stress in the 

contact area now consists of a part due to free 

rolling (dashed in figure 8) and a 

superimposed shear stress caused by braking. 

As a results, the major part of the tyre in the 

contact area is stretched due to the braking 

torque. Tread elements entering the contact 

area first try to adhere to the road surface, with the longitudinal deflection and therefore 

the shear stress increasing linearly along the contact zone. At a certain point, the shear 

stress reaches the limits of friction (µ.σz with local road friction µ and normal stress σz 

under Coulomb law) and the treads start to slide. As a result, the shear stress drops 

down along the rear part of the contact zone. In a similar way as discussed for a free 

rolling tyre, one arrives at a distribution of the peripheral velocity of treads (w.r.t. the 

wheel center) as shown in the bottom part of figure 8.  

 

Note that, in general, sliding starts at the rear of the contact ares and extends towards 

the front part of the contact area for increasing brake torque, until finally sliding is 

apparent along the full contact area. 

 

In case of a tyre under driving conditions, the angular speed is increased and therefore 

the effective rolling radius Re,driving decreased. The drive torque has to balance moments 

resulting from a driving force in the contact area and the tyre load. The offset of the 

tyre load line in front of the wheel centre is decreased with respect to the case of the 

free rolling tyre. The shear stress is now built up from the free rolling distribution plus 

a triangular shaped pattern along the contact area, and the tyre tread material is 

experiencing a compression. 

 

3.1. Practical brakeslip 

We introduce the practical longitudinal brakeslip κ as follows: 
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Figure 8.: Braking rolling tyre 
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with slip speed Vsx of tread elements with respect to the road surface (obtained from the 

difference of the forward tyre speed Vx at the wheel centre with respect to the road 

surface, and the peripheral speed Ω.Re of tread elements with respect to the wheel 

centre), and the angular speed Ω0 under free rolling conditions. Observe that, under 

braking, κ varies between -1 (locked wheel, Ω = 0) and 0 (Vsx = 0). 

 

When a driver starts braking, the angular speed per wheel is changed, where the 

rotational wheel inertia Iwheel is decelerated by the resultant of the brake torque and the 

tyre brake force: 

 

)(.. κxlywheel FRMI −−=Ω&  

 

with Fx > 0 in positive x-direction (i.e. Fx < 0 in case of braking). This equation is part 

of a larger set of equations to solve the braking problem for a vehicle. Clearly, the 

forward vehicle speed (being included in the above angular wheel velocity equation 

through the slip  κ ) will decrease. The resulting forward vehicle speed follows from 

another equation describing the balance of the vehicle inertia deceleration and the 

wheel forces: 

 

∑=
wheelslal

xxvehicle FVm )(. κ&  

 

3.2. Longitudinal slip characteristics. 

In order to solve the angular wheel velocity equations for each wheel (with possibly all 

different slip values), one requires a description of Fx in terms of practical slip κ. A 

typical behaviour of this longitudinal characteristic tyre behaviour is shown in figure 9. 

In the left-hand picture, we have plotted -Fx (with brake force Fx) versus |κ| whereas in 

the right-hand picture, we have plotted - µx ≡ -Fx/Fz, the so-called normalized tyre force 

 

Figure 9: Brake force vs. longitudinal slip 
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(also known as the longitudinal force coefficient), for various values of the tyre load. 

Usually, the curves will not exactly pass the origin (due to rolling resistance, 

inaccuracies in the tyre). Clearly, the longitudinal tyre force is close to being 

proportional to the tyre load but not quite. The longitudinal slip stiffness, being the 

slope of the curve for Fx at κ = 0, tends to decrease more then proportional with Fz for 

increasing tyre load. One observes a peak value and a saturation value in both pictures, 

for the longitudinal force coefficient indicated as - µxp (peak value) and - µxs (the limit 

of - µx for pure sliding, i.e. at κ = -1). The peak value is obtained for brakeslip around 

0.1 and 0.15 in absolute value (10 – 15 % slip). For small brakeslip, this characteristic 

can be approximated by a linear relationship, with slope being the longitudinal slip 

stiffness. 

The peak value is the optimal value to brake, but just beyond the slip corresponding to 

this optimal value, the wheel will lock in very short time. That is the reason why 

nowadays almost all vehicles are equipped with anti-lock systems, in order to prevent 

to excessive brake slip. In the same way, one may discuss driveslip, and the risk of 

spinning of the wheel in case of too high traction. This phenomenon can be prevented 

using traction control systems.  

 

3.3. Road conditions and brakeslip. 

The normalized tyre force - µx and (therefore also the longitudinal tyre force itself) 

depends essentially on the tyre-road conditions, that means on things like: 

 

- road roughness. Pavement exhibits three types of roughness, micro-texture 

(with wavelength less than 0.5 mm), macro-texture (wavelength between 0.5 

mm and 50 mm) and mega-texture (wavelength exceeding 50 mm), see [33] 

- tyre tread wear 

- wet conditions (wet, possible hydroplaning, snow, ice,…) 

 

Micro- and macro-texture are 

schematically shown in figure 10. 

Macro-texture is related to the 

overall roughness of the road 

resulting from the number, type and 

size of stone chippings, whereas 

micro texture has to do with the 

roughness of the individual 

chippings. Idealized texture leads to 

sufficient drainage and significant 

hysteretic friction (local pressures) at 

the cost of tyre wear. Tips should 

preferable be sharp to have good friction even under wet conditions, but that leads to 

abrasive wear. The existence of micro-texture is due to the typical asphalt ingredients 

(silica, sand, quartzites).  

 

Macro-texture and micro-texture vary in time. It is known from drain asphalt that, due 

to the situation of many small contact zones between rubber and ground, there is more 

 

Micro-roughness

Macro-roughness

Micro-roughness

Macro-roughness

 

Figure 10.: Micro- and macro road roughness 
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polishing effect and therefore rounded asperities, with impact on the adhesive 

properties of the tyre road contact. Roughly speaking one might say that macro-texture 

is related to a strong velocity dependence of the tyre-road contact under wet/rain 

conditions, whereas micro-texture is related to the slightly wet or dry-adhesive aspects. 

See also [17]. 

 

3.3.1. Wet road conditions. 

Under wet road conditions, the longitudinal force coefficient maximum level drops, to 

levels in the order of  0.6 - 0.8 for a wet road, to 0.4 – 0.5 for snow, and to levels of 0.2 

– 0.4 for ice.  

A special case is given when water is present on the road. In order to maintain contact 

between  tyre and road, the water has to be evacuated, and this property may be 

improved by adjusting the tread block pattern of the tyre (longitudinal grooves, or 

grooves curved in an outward direction guiding the water in a radial direction away 

from the tyre). With increasing speed, there is less time to remove the water and the 

contact zone is further reduced, see figure 11 for an example [4] for three different 

speeds.  

At a certain speed, the tyre may float entirely on a film of water (hydroplaning), and 

the friction coefficient drops to very low values (< 0.1). In other words, hydroplaning 

 

Figure 11.: Contact area on a wet road for different speeds 
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Figure 12.: The effect of road conditons and speed in the longitudinal 

force coefficient 
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occurs when a tyres is lifted from the road by a layer of water being trapped in front of 

and under a tire. 

One usually distinguishes between dynamic hydroplaning (water is not removed fast 

enough to prevent loss of contact) and viscous aquaplaning when the road is 

contaminated with dirt, oil, grease, rubber-parts, leaves etc. Usually, regular rain will 

wash this away, but especially after a long dry period with dirt, dust etc. having piled 

up, a sudden rain may result in a more viscous mixture on the road causing unexpected 

dangerous (i.e. low friction) conditions.   

In figure 12, the qualitative effect of road conditions and velocity on the longitudinal 

force coefficient is shown. These graphs agree with results, presented in [10]. One 

observes a minimal effect of velocity in case of a dry road in contrast to the situation 

when the road is wet. In the latter case, the brake force drops significantly with vehicle 

velocity.  

 

3.3.2.: Road conditions, wear, tyre load and speed 

The impact of aquaplaning in 

combination with wear is illustrated in 

figure 13, taken from [10], with the 

locked wheel longitudinal force 

coefficient value plotted against vehicle 

velocity. As expected, this locked wheel 

value is further reduced under tread wear 

conditions. The hydroplaning velocity is 

reduced with increasing water layer 

depth. Similar results for the peak wheel 

longitudinal force coefficient are shown 

in figure 14 (from [14]). 

 

The combined effect of speed, road 

condition and tyre load is shown in 

figure 15, in terms of the peak 

longitudinal coefficient µxp  and the 

sliding longitudinal coefficient µxs, from 

[5].  

 

Sliding coefficients are more sensitive to 

speed than the peak values. The 

sensitivity of speed on the peak value 

increases if the road gets wet.  
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Figure 14.: Maximum friction coefficient 
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3.4. Tyre models for longitudinal slip behaviour 

There are different ways to describe the longitudinal slip behaviour using tyre models. 

One distinguishes between physical models and empirical models. A physical model 

describes the tyre on the basis of the recognized physical phenomena during braking, 

usually in a simplified way. Such simplified models do not aim to give a quantitative 

description of the tyre handling performance, but merely give an explanation of the 

qualitative phenomena (shape of the curve, trends in the sense that the impact of 

changing vehicle speed, road conditions etc. are well covered, etc.). These models can 

be used for longitudinal behaviour, cornering behaviour and combined slip behaviour, 

and will therefore be addressed in section 5.  

More complex physical models are for example Finite Element models, applied in 

order to derive quantitatively correct tyre performance based on a detailed description 

of the tyre structure and material properties. That means that FE models form a link 

between tyre design and tyre performance. However, FE-models are very time 

consuming, both in CPU-time and in preparation time (setting up the model).  

 

Empirical tyre models are based on a similarity approach where experimental results 

are used to find parameters to tune a certain mathematical description. A well-know 

empirical tyre model is de Magic Formula model, due to H.B. Pacejka, therefore also 

often referred to as the Pacejka model. This  Pacejka model has been implemented in 

many different versions. We refer here to the version being implemented in 

ADAMS/tyre, originated from DELFT-TYRE, see [22] and [1]. We note here that, 

different from the preceding analysis, the Pacejka tyre model assumes a z-axis pointing 

upward. i.e. with the y-direction pointing port side.  

 

3.5. The pure slip longitudinal Magic Formula description 

The basic mathematical formula describing the longitudinal characteristics is given by 

the so-called sine-version, given by: 

Vx SxBxBExBCDxFxY +−−== )))).arctan(..(.arctan(.sin(.)()(  

 

 

Figure 15.: Combined effect of speed, tyre load and road condition on peak and 

sliding longitudinal coefficient, from [5] 
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with Y(x) being either Fx or Fy, and x - SH being either the longitudinal slip κ or the 

lateral slip tan (α) for slip angle α (see next section). The parameters SH and SV are so-

called shifts to allow the curve not to pass through the origin (i.e. Y(x) = 0 does not 

automatically imply x = 0). 

D is related to the peak of the longitudinal force coefficient and the wheel load: 

zxp FD .µ=  

 

Neglecting camber, the Magic Formula give for µxp: 

).( 21 zxDxDxp dfpp +=µ  with 
0

0

z

zz

z
F

FF
df

−
=  

with nominal tyre load Fz0.  

The nominal tyre load is related to the maximum admissible static load for the specific 

temperature and speed index, usually referred to as the ETRTO value (European Tyre 

and Rim Technical Organisation). The speed index indicates the maximum speed for 

which the tyre is allowed to be used, before it destroys itself due to overheating, as a 

result of high-frequency standing waves responsible for a strong increase of internal 

deformation power being converted into heat 

Choosing the nominal value Fz0 being equal to 80 % of this ETRTO value, a reasonable 

choice for Fz0 is listed in table 1. 

 

Class Fz0 [N] Example 

Compactclass 3000 VW-Polo 

Middle class 5000 VW-Passat, BMW-5,.. 

Topclass 6000 Audi A8 

Table 1.: Some typical values for the nominal tyre load Fz0. 

 

Hence, a specific nominal tyre load is related to a class of tyres, with the same 

maximum allowable operating speed. Different nominal tyre loads refer therefore to 

different classes of tyres, in contrast to the variation in tyre load for one specific tyre 

(due to static load variations, load transfer during cornering, etc.).  

Other parameters in the Pacejka tyre formula for pure longitudinal slip can be 

expressed as follows (neglecting camber): 

).exp()...( 321 zKxzKxKxz dfpdfppFBCD +=  
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A typical value for C = Cx is given by Cx = 1.68. For further suggestions for 

parameters, we refer to [1]. 

 

 

4. The tyre under cornering conditions 
Let us consider a tyre under cornering conditions, as indicated in figure 16. Under 

cornering conditions, there exists a local velocity vector, being in general not parallel to 

the wheel centre plane. This wheel centre plane is defined as the symmetry plane of the 

tyre such that forces acting in the symmetry plane do not contribute to the lateral force 

for the tyre. 

In the front part of the contact are, the treads of the tyre try to follow this local speed 

direction, resulting in a displacement along the tyre circumference within the contact 

are, increasing linearly from zero (just in front of the contact area) up to a situation 

where the induced lateral shear stress just reaches the maximum possible shear stress 

level, i.e. µ.σz with local road friction µ and normal stress σz under Coulomb law. We 

have discussed a similar phenomena for braking and driving (traction) of the tyre. 

Beyond that point, the treads of the tyre will slide leading to a reduction of the shear 

stress in the direction of the contact area rear end. Clearly, when sliding and in the 

absence of longitudinal slip, the lateral shear stress will be equal to µ.σz. With σz 

reducing to zero at the edges of the contact area, the friction limits for the shear stress 

will decrease further, and sliding is likely to extend until the contact area rear end.  

 

Deflection of the tyre is due to two separate effects, (1) the deflection of the contact 

rubber, i.e. of the treads, and (2) deflection  of the belt.  

Both compliances allow the tyre to direct itself to the local speed direction, but the 

stiffness are different. In terms of physical models, one may distinguish here between 

the so-called brush model and the stressed string model. Both will be treated in more 

detail in section 5. 

 

We introduce the practical lateral slip as - tan(α) , i.e. 
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Figure 16.: Tyre under cornering conditions 
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with slip speed Vsy. As we will see later, the practical slip quantities correspond with a 

description of tyre deflection in terms of deformed quantities. An alternative approach 

might be to express slip in terms of the undeformed coordinate system. This will result 

in the so-called theoretical slip quantities, defined as:     
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one easily arrives at the following relationship between practical and theoretical slip 

quantities: 
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As we observed before, the practical brake slip sx varies between 0 and 1, whereas 

under driving conditions, - ∞ < sx < 0, i.e. the practical driveslip may attain very large 

absolute values in case of wheel spinning on the spot. In contrast to the practical slip, 

the theoretical longitudinal slip remains bounded under driving conditions but may 

grow to large absolute values in case of braking when the wheel gets locked.  

 

4.1. Vehicle cornering performance 

Vehicle dynamics analysis includes 

relationships between slip angles at 

front and rear axles (and possibly 

at the separate wheels) and global 

vehicle performance output 

variables such as yaw-rate and 

lateral vehicle speed (or, 

equivalently, the body side slip 

angle). See figure 17 for a 

schematic layout of a vehicle under 

cornering conditions. The four tyre 

forces balance the centripetal force, 

acting on the vehicle in local 

lateral direction: 
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Figure 17.: Vehicle handling, schematically 
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with lateral vehicle speed at the centre of gravity, vy and yaw rate r. In addition, the 

moments of the four tyre around the centre of gravity have to balance the total inertial 

moment, approximated by: 
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wheelsrear
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with vehicle moment of inertia in vertical z-direction Ivehicle. Note that, for small slip 

angles and steering angle, the vehicle speed can be approximated by Vx (and vice 

versa). 

 

Usually, one assumes the slip angles to be identical for both front wheels, and likewise 

for both rear wheels. Slip angles are defined by the orientation of the local velocity 

vector, relative to the wheel symmetry plane. With the variables as indicated in figure 

17, one easily finds for the local outward lateral velocity at the front and rear wheels: 

 

Local speed front tyre : arVy .−−  

Local speed rear tyre : brVy .+−  

 

Hence,  
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4.2. Lateral slip characteristics 

In order to solve the two equations above, one requires a description of the lateral force 

in terms of practical slip tan(α) ≈  (α). A typical behaviour of this lateral characteristic 

tyre behaviour is shown in figure 18. 

 

Figure 18.: Cornering force vs. slipangle, camber angle = 0 
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Similar as in case of braking or driving, we have plotted both Fy and  µy ≡ Fy/Fz, the so-

called normalized tyre force or the lateral force coefficient (sideforce coefficient), for 

various values of the tyre load. Again, one observes the tyre force to be close to being 

proportional to the tyre load but not quite. 

One observes peak values and saturation values in both pictures, indicated for the 

lateral force coefficient as the peak value µyp, and µys as the limit of µy when the tyre is 

drifting for large slip angle. For small slipangle, this characteristic can be approximated 

by a linear relationship, with slope being the normalized lateral slip stiffness or the 

normalized cornering stiffness. 

 

4.3. Side force coefficient for different textures and speeds 

Some values of the sliding sideforce coefficient µys for different texture depth are 

shown in figure 19, under wetted conditions. One observes an increase in side friction 

force with texture depth (except for the Bridport surface). The Bridport surface is rather 

smooth (pebbles included), eliminating the adhesion coefficient of friction for wetted 

sliding conditions. Observe also the effect of speed, with increased speed lowering the 

friction, especially with small texture depth (as expected).  

 

4.4. Cornering stiffness versus tyre load 

The lateral slip stiffness or cornering stiffness Cyα being the slope of Fy (α) at α = 0 

(the slope in the left-hand picture in figure 18, see section 4.2), tends to decrease more 

then proportional with Fz for increasing tyre load. 

The cornering force is shown in figure 20 vs. tyre load. This non-linear relationship is 

important in the sense that, during cornering, the tyre load of the outer wheel will 
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increase whereas the inner wheel load will decrease. Due to the nonlinear dependence 

of cornering stiffness on tyre load, the change in cornering stiffness at the outer wheel 

is exceeded in absolute value by the change at the inner wheel. For this reason, the 

average cornering stiffness for the full axle is decreased. With different roll stiffnesses 

at front and rear axle, this works out differently at both axles. 

We will see later that the cornering performance of the vehicle strongly depends on the 

axle characteristics. As a result, this performance will change with increasing roll. 

Hence, by actively controlling the roll stiffness at front and/or rear axle, one is able to 

improve the vehicle handling performance 

. 

In figure 21, ranges of typical values of the cornering stiffness coefficient (cornering 

stiffness, divided by the tyre load) are shown vs. tyre load for passenger car and truck 

 

Figure 21.: Cornering stiffness coefficient (from normalized tyre force) for 

passenger car and truck tyres, from [2] 

 

 

Figure 20.: Cornering stifness vs. tyre load 
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tyres. Truck tyres experience quite a large tyre load variation, compared to assenger car 

tyres. Clearly, these tyres have to be designed with minimum impact of load on tyre 

performance. This is illustrated in figure 21. 

 

4.5. Pneumatic trail and aligning torque 

Figure 16 indicates that the sideforce acts at a small distance behind the wheel centre. 

This distance is called the pneumatic trail. At small slip (small α), there is almost no 

sliding and the adhesion part extends almost over the entire contact area. This 

corresponds to a situation where the shear stress profile is very unsymmetrical along 

the contact area, with a rather large pneumatic trail. With slip increasing, the sliding 

area increases towards the front end of the contact area. Under Coulombs law, The 

shear stress in the sliding area follows µ.σz. The normal contact stress σz throughout 

the contact area is shown in figure 22 for both a radial-ply tyre and a bias-ply tyre.     

 

Both pictures in figure 22 confirm that the resultant vertical contact force acts slightly 

in front of the wheel centre (as discussed before), meaning that the pneumatic trail may 

even become negative for excessive sliding. Observe also the different behaviour for 

bias-ply and radial-ply tyres at the shoulders of the tyres. We have seen similar 

concentrations in shear stress in the previous sections. 

 

 

 

 

Hence, we have a sideforce Fy (α) , starting at small values at α = 0 and growing to a 

maximum value (µ.Fz) whereas the pneumatic trail tp (α) starts at large values, reducing 

to small values with even negative values for excessive slip. Pneumatic trail times 

sideforce yields the so-called aligning torque Mz. This torque is called aligning since it 

aims to orient the tyre in the speed direction. It works against the lateral deformation 

due to the lateral force. With: 

 

 

Figure 22.: Normal contact stress profile for different tyres, from [11] 
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)()().()( αααα zrypz MFtM +−=  

 

for residual torque Mzr (small torque resulting from inaccuracies in the tyre design, 

rapidly decreasing in absolute value with increasing slip angle) we expect this aligning 

torque to start close to zero for α = 0, to grow in absolute value but to decrease again 

with the pneumatic trail for increasing slip.  

We have plotted the pneumatic trail and the aligning torque in figure 23. 

Comparing figure 23 with figure 18 (see section 4.2), we see that the aligning torque 

passes its maximum at a slip angle value, smaller than at the maximum of the sideforce 

where the tyre starts sliding. The torque from the combined effect of mechanical trail 

(castor) and pneumatic trail is felt by the driver through the steering wheel. Reduction 

of the aligning torque in absolute value should warn the driver that he or she is 

approaching a situation with increased risk of skidding of the front axle due to 

excessive understeer.  

 

4.6. The empirical Magic Formula 

Referring to the empirical Magic Formula sine version describing the lateral 

characteristics: 

Vy SxBxBEBCDxF +−−= )))).arctan(..(.arctan(.sin(.)( αα  

 

the different coefficients B, D and E can be expressed as follows (neglecting camber): 
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Figure 23.: Pneumatic trail & aligning torque vs slip angle 
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with nominal tyre load Fz0. Furthermore 
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4.7. Camber 

So far, we neglected camber. The camber angle 

is defined as the angle between the wheel plane 

and the normal of the road in the transverse plane 

of the vehicle, see figure 24. The presence of a 

camber angle γ produces a lateral force, which is 

usually much smaller than the side force due to 

sideslip α. This can be explained as follows. A 

wheel under a camber angle would move over a 

circular track. The direction of motion of the 

wheel is forced by the vehicle velocity vector. For 

example, the wheel may be going straight ahead. 

As a result, local shear stresses arise in the contact 

area, building up a camber force.  

For a motorcycle, the camber force is the main 

force between tyre and road, that prevents the tyre 

to slide.    

In the linear range, the side force can be expressed 

in terms of slip angle and camber angle in the 

following way: 

 

γαα γα ..)( yyy CCF +=   ;  small α and γ 

 

with cornering stiffness Cyα and camber stiffness 

Cyγ, defined as: 
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Figure 24.: Camber and camber 

force, from [2] 

 

Figure 25.: Camber thrust 

coefficient, from [2] 
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For different light truck tyres, for various loads and tyre inner pressure, the camber 

thrust coefficient (ratio of camber stiffness and tyre load) is shown in figure 25. One 

observes the low value in the order of 0.01 until 0.03, to be compared to values 

between 0.5 and 1.0 for the normalized cornering stiffness. 

 

In the nonlinear range, the above empirical formulas have to be corrected by including 

the dependency on camber. We refer to [1], [22] and [23] for further details.   

We have varied the camber angle and calculated the side force, based on the Magic 

Formula parameters, presented in [1]. The result is shown in figure 26. The camber 

angle is changed such that the side force is decreased with increase of camber angle in 

 

Figure 27.: Pneumatic trail & aligning torque for varying camber angle 

 

 

Figure 26.: Side force vs. slip angle for changing camber angle (in rad) 



 

 
25 

absolute value. This is the usual case, with the carbody rolling outward, leading to a 

reduction of the side force. The corresponding pneumatic trail and aligning torque for 

varying camber angle are shown in figure 27.  

 

 

4.8. The Gough plot 

An interesting way of presenting tyre characteristics in a graphical way, is given by the 

so-called Gough-plot where side force Fy is plotted against Mz, neglecting shifts, see 

figure 28. 

 

This plot is very illustrative, since it shows the dependency of the tyre characteristics 

on slip angle, tyre load and pneumatic trail in one picture. It clearly identifies the 

different impact of slip-angle (dashed) and the tyre load (solid). Lines of constant 

pneumatic trail are straight lines, distributed purely radial. For larger tyre load, the 

lateral force increases. The aligning  torque increases as well, but it starts to decrease in 

slip angle, when the lateral force is still increasing in the slip angle. For larger slip 

angle, also the side force starts to saturate.  

This plot shows that already for small side force and aligning torque (i.e. normal non-

extreme cornering), a clear distinction can be made between the impact of α and Fz, the 

latter of which is close to the impact of road friction. Consequently, this plot suggests 

itself as a way of monitoring side slip and road friction from the tyre performance, a 

fact that has been exploited successfully by Pasterkamp [28]. 
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Figure 28.: Gough-plot of a passenger car tyre 

(Fz = 1000 (1000) 7000, α = 0.04 (0.04) 0.2 rad, tp = 0.01 (0.01) 0.05 ) 
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5. Combined braking and cornering 
The discussion in the preceding section deals with pure slip, i.e. in cases where the car 

is either cornering, or braking/driving. When a driver torque or brake torque is applied 

during cornering, the total horizontal force is acting not in the longitudinal or lateral 

direction, and the cornering force is reduced. Likewise, applying a side force while 

braking or driving will reduce the longitudinal force, i.e. the braking or driving 

potential of the tyre. With the total 

force: 

 

22

yxtyre FFF +=  

 

we can define the resultant force 

coefficient as 

 

z

tyre

tyre
F

F
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We have plotted the longitudinal 

and lateral force versus 

longitudinal slip in figure 29, for 

varying slip angle.  

One observes a decrease of Fx and 

increase of Fy for increasing slip 

angle. 

For small brakeslip or driveslip, the sideforce is dominant. For large brakes;lip or 

driveslip, there is hardly any potential left for the sideforce, and the sideforce appears 

to be small compared to values for small longitudinal slip.  

 

5.1. Polar diagrams, Fx vs. Fy and Fx vs. Mz 

In figure 30, we have included so-called polar plots, with Fx plotted against sideforce Fy 
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Figure 29.: Interaction between longitudinal forces 

and side forces 
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Figure 30.: Polar diagrams, Fx vs. Fy and Fx vs. Mz for constant slip angle  

(α =-0.1 -0.05  0.0  0.05  0.1  0.15  0.25  0.4) 
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and against aligning torque Mz, respectively. 

These diagrams are nonsymmetrical in Fx , which is due to the carcass-stiffness. The 

longitudinal force, acting in the contact zone in the direction of the local rotated 

longitudinal coordinate axis, contributes to both the total lateral force Fy and to the 

aligning torque Mz. Clearly, this works out just opposite when the side force changes 

sign.  

Observe in figure 30 that the Fx-Fy diagram is close to a circular area. One would 

expect the saturation of the total horizontal force Ftyre to occur when Ftyre = µ.Fz with 

road friction µ. This would exactly lead to a circle, describing the maximum possible 

values for Ftyre.  

 

5.2. The Magic Formula for combined slip. 

The magic Formula describes combined slip using weighting functions for the pure slip 

characteristics: 

 

)().,(),( , κκακα α purexxx FGF =  

κκ ακακα Vypureyyy SFGF += )().,(),( ,  

),(.)()),().((),( ,, καακαακα κ FsMSFtM eqrzrVyyeqtpz ++−−=  

 

for equivalent slip angles αt,eq and αr,eq (depending on longitudinal slip), residual torque 
Mzr and moment arm s of Fx contributing to Mz. See [23] for more details. Again we 

observe a contribution to the aligning torque from the longitudinal force, due to the 

carcass flexibility. 

The weighting functions in the above expressions can be described by cosine versions 

of the Magic Formula, with Magic Formula parameters tuned from experiments. 

It can be shown (see for example [23] and [10]) that the combined slip forces can be 

approximated well by: 
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for theoretical slip values ρx and  ρy, introduced earlier. A similar successful 

approximation can be derived from the practical slip quantities: 
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We refer to [29] where these approximations have been studied in detail.  
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Some results are shown in figure 31 where the polar plot Fx vs. Fy and both tyre forces 

vs. longitudinal slip for approximations cf. Magic Formula and cf. the above similarity 

approach are shown. We observe the unrealistic symmetry in the approximation. On the 

other hand, both type of curves are not far apart, and one should realize that the 

approximated curves are based on the pure slip characteristics, i.e. they do not require 

combined slip measurements. And if more accurate results are needed, the 

approximated curves give a very good first estimate, to verify the test results. Note that, 

in many analyses, the high accuracy from the Magic Formula empirical approach are 

not required, and the approximated values may serve as a good alternative. Pure slip 

characteristics are often easily estimated from published graphs, i.e. even pure slip 

measurements may not be necessary to find a satisfactory description of the pure slip 

characteristics, and through that, a combined slip description.  

 

5.3. Physical tyre models, requirements 

We have mentioned earlier two possible approaches to derive physical tyre models: 

 

1. the brush model 

2. the stressed string model 

 

These two important physical models are schematically shown in figure 32. 

These approaches are two special examples of more general physical models, which 

will be discussed here in some more detail with special emphasis to brush models. The 

models all give a general description of the tyre under full combined slip conditions. 

Therefore, these models will be addressed in this section. Note however, that the 

models can easily be simplified to pure slip in either lateral (i.e. cornering) or 

longitudinal (i.e. braking or driving) direction. 

 

Physical models should account for: 

 

� frictional properties in the tyre-road interface 

� distribution of the normal contact force 

 

Approximation
Magic Formula
Approximation
Magic Formula
Approximation
Magic Formula

 

Figure 31.: Approximation combined slip characteristics based on pure slip 

characteristics vs. Magic Formula 
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� stiffness of the tread rubber 

� stiffness of the carcass. 

 

Models of the carcass commonly encountered in the tyre literature can either be a 

spring, they can be of beam type or of stretched string type. The exact representation of 

the carcass by a beam instead of a stretched string is more difficult because of the fact 

that the differential equation for the shape of the deformed peripheral line of the carcass 

becomes of fourth instead of the second order. For the study of steady state tyre 

behaviour, most authors approximate the more or less exact expressions for the lateral  

 

As an extension of the model of Fromm (brush approach) and of Julien (see [15] for 

further references) who did not consider carcass elasticity, Fiala [6] and Freudenstein 

[9] developed theories in which the carcass deformation has been approximated with a 

symmetric parabola determined only by the lateral force. Böhm [3] and Borgmann [4], 

the latter without tread elements, use asymmetric approximate shapes determined by 

both the lateral force and the aligning torque. In [24] and [25], Pacejka describes the 

steady-state tyre characteristics for a stretched-string tyre model with and without tread 

elements attached to the string. The lateral stiffness distributed as measured on a slowly 

rolling tyre in terms of influence of Green’s functions (cf. [31]) may be employed in a 

model for the slipping tyre as has been discussed in [26] and [27].  

The combination of stressed string model and brush-model under arbitrary combined 

slip conditions has been considered by [30] 

 

5.4. Performance of different physical tyre models 

Frank [7] has carried out a thorough comparative investigation of the various one-

dimensional models. He employed a general fourth-order differential equation with 

which stretched string, beam and stretched beam tyre models can be examined. He 

 

Figure 32.: Physical tyre models (brush-model, stressed string model) 
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obtained the exact solution of the stationary side slip problem (no longitudinal slip 

included), and comparison with the various tyre models revealed that the stretched 

string type of model was more suitable for the simulation of bias-ply tyres, whereas the 

beam model (i.e. with belt-bending taken into account) was more appropriate for the 

radial-ply tyre. 

The following models were compared: 

 

a. stretched beam model. The belt is taken as a beam under tension, i.e. with bending 

stiffness taken into account. 

b. beam model. Similar to model a, however with the tension force neglected. 

c. approximate solution for the lateral force by Fiala, see [6]. 

d. model of Fromm, taking only tread deformation into account with the carcass 

assumed to be rigid. 

 

Before we discuss the results, we first give some understanding about belt models. 

Consider the tyre top-view shown in figure 33.  

 

Distinction is made between belt deflection and tread defection. The belt deflection 

can, in general, be described by a stretched beam. That means that the steady state 

lateral displacement y(x) of the belt, in terms of the position x along the wheel centre 

plane, satisfies a fourth order differential equation: 
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for bending stiffness EI, tension force S, carcass stiffness per unit length K and lateral 

side force per unit length qy(x). With S = 0, the beam is non-stretched. For EI = 0, the 

equation reduces to the stretched string equation. The Fiala approximation describes the 

lateral force Fy as a third order expression in the slip angle α. The model of Fromm 

neglects the carcass deflection, i.e. only tread deflection is described leading to the 

brush model. 

Figures 34 and 35 present the calculated characteristics (taken from [9]) of models a – 

d. 

 

Figure 33.: Lateral tyre deformation 
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The parameters in cases a – c were chosen in such a way as to give a best fit to 

experimental data for the cornering force at small slip angles. The curves d show the 

result when carcass elasticity has been neglected. The coefficient of friction µ was 

taken constant and the vertical pressure distribution was taken from measurements, 

lying between a parabolic and an elliptic shape. The positive aligning torque at high 

slipvalues arose due to a slightly asymmetric shape of the pressure distribution σz(x). 

The phenomenon that in practice the aligning torque indeed varies in this way is 

probably due to a combination of several effects. Apart from the cause just mentioned 

above, the rolling resistance force acting out of the wheel plane (along the actual 

deformed belt, out of the wheel plane cf. figure 32), may contribute. Another important 

factor causing the moment to become positive is the fact that the coefficient of friction 

is not a constant but may depend on the sliding velocity as we shall see later. That 

means that the coefficient of friction will change (may decrease) in the sliding part of 

the contact area, which also causes the slight drop in the Fy(α) – curves as has 

sometimes been found experimentally at high slip values especially on wet roads. 

The influence of different but symmetric shapes for the vertical force distribution along 

the x-axis has been theoretically investigated by Borgmann [4]. He finds that, 

especially for tyres exhibiting a low carcass stiffness, the influence of the pressure 

distribution is of importance and has, as may be expected, particular effect on the 

aligning torque at higher values of slip angle α.  

Many authors adopt the parabolic normal stress distribution in the contact area for 

purpose of mathematical simplicity, or a uniform (rectangular) distribution. 

Figures 34 and 35 show that, when the model parameters are chosen properly, the 

choice of the type of carcass model hardly influences the results.  

 

5.5. The Brush model 

For illustration, we shall present now the theory of steady-state slip with the aid of the 

simple brush-type tyre model, originally stemming from Fromm. The theory of this 

section will not consider camber and turning (turnslip) of the wheel. See [23] for an 

extensive treatment of the brush-model. We refer to figure 36 for a schematic layout of 

the model. The tyre is equipped with small linear beams (brush elements), some of 

 

Figure 34.: Cornering force, model a – d        Figure 35.: Aligning torque, model a - d 
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which touch the ground and, as a result, will be deformed as a linear beam. Two 

regions are identified, a leading adhesion region where the contact line (connecting the 

tips of the brush elements) is straight, and a sliding region where the shear stress 

follows Coulombs law: 

 

zyx σµτττ .22 =+=  

 

The tyre is moving with speed V, built up from a rolling speed Vr and a slip speed Vs, 

with both a lateral and a longitudinal component. The tyre is assumed to move 

sideways with a slip angle α, in combination with a longitudinal slip κ, i.e. we assume 

the general case of combined slip.  

 

Figure 37.: Topview brush model 
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Figure 36.: The brush-model (according to Fromm) 
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A topview of the tyre under deflection of the tread elements (the bristles, or brushes) is 

shown in figure 37. 

 

 

5.5.1. Displacements in terms of slip and position.  

At the leading edge of the contact area, the deformation is still zero. The base and the 

tip of the tread element coincide. With the tyre moving with speed V and rolling with 

rolling speed Vr, the base of the tread is attached to the wheel plane and will move 

inside the contact area with the rolling speed, say to point B. At the same time, the tip 

of the tread element will move to point A opposite to speed V. With time-interval ∆t, 

this means that the displacement wA in the actual contact area along the deformed 

treads can be written as: 

 

 tVwA ∆= .           

 

The new positions ξA (tip) and ξB (base) are found from: 

 

 tVA ∆= ).cos(. αξ  

           

 tVrB ∆= .ξ  

 

from which expressions for the deformation ex and ey (cf. figure 37) can be derived: 

 

 tVVe rx ∆−= ].cos.[ α  

            

 tVe y ∆= .sin. α  

 

This means that the displacements can be expressed in terms of either the position in 

the deformed belt situation, ξA, or in the undeformed belt co-ordinate ξB as follows: 
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The vector of coefficients corresponds to either practical slip and theoretical slip, as 

defined before. The expressions are of the general form: 

 

 displacement = slip x position 

 

where slip is defined on the basis of either the position ξA with respect to the deformed 

tyre or the position ξB with respect to the undeformed tyre. This conforms our earlier 

statement that practical slip quantities are related to the deformed tyre quantities 
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whereas the theoretical slip quantities are derived on the basis of undeformed  tyre 

quantities.  

 

The contact area is taken as a square with length 2.a and width 2.b. We assume a 

parabolic pressure distribution p(x), taken uniform over the contact width 2.b: 
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with σz0 following from the condition that  
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5.5.2. Adhesion and sliding 

We shall now derive expressions for the total displacement e = 22

yx ee +  in the contact 

area, with distinction between adhesion and sliding. 

In the adhesion region, it follows that  

 

 BBe ξακ
κ

ξρ ].tan.[
1

1
. 22 +

+
==       

 

In the sliding region, assuming Coulomb friction with friction coefficient µ, the shear 

stress τ(x,y) is bounded by µ.σ(x). The displacement e is therefore bounded as well, 

and it follows from the stiffness of the tread, denoted as k 
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We introduce the tyre parameter θ by 
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resulting in 
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The break-away point ξs (indicated in figure 37) at which adhesion turns into sliding is 

found by taking emax equal to the deformation e yielding: 

 

 ).1.(2 ρθξ −= as         

 

Consequently, for ρ = 0, ξs = 2a and the full contact area is in the state of adhesion. 

With increasing ρ, the break away point ξs moves to a value ξs = 0, attained at ρ = 1/θ.  

In other words, the parameter θ > 1 is the reciprocal total slip for which the full contact 

area is just sliding. Beyond the magnitude 1/θ.  for total theoretical slip, the tyre 

remains in a state of complete sliding.  

In case of pure slip, this situation is reached for either  

 

 |α| = αm = arctan (1/θ) 

 

or 
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θ
κ m , in case of braking (κ < 0) 

 

5.5.3. Shear forces 

Next, we determine the shear stresses and, from that, the shear force.  

The shear stressses are found from 
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where it was used that for isotropic tread stiffnesses, the shear stress vector has the 

same (opposite) orientation as the theoretical slip vector. 

The shear force is now easily calculated from 
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and the force-components (lateral force, longitudinal force) are obtained from: 
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Remark 

Note that this expression has been used for the empirical Magic Formula to 

approximate the horizontal contact forces from the pure slip characteristics. We 

observed earlier that both this approximation based on theoretical slip as the 

approximation based on practical slip both give satisfactory results. 

 

We easily arrive at: 

 

 ]).()..(3..3.[. 32 ρθρθρθµ +−= zFF  ; ρ < 1/θ    

     
zF.µ=     ; ρ ≥ 1/θ 

 

5.5.4. Aligning torque and pneumatic trail 

In the same way, one arrives at a closed form expression for the aligning torque Mz : 
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In case ρ ≥ 1/θ, Mz will vanish. Note that this can either be a result of increasing slip 

angle α or increasing brakeslip or driveslip |κ|. The pneumatic trail follows from the 

ratio of Fy and -Mz:  
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5.5.5. Tyre characteristics according to the brush model 

The longitudinal and lateral forces under pure slip conditions are shown shown in 

figure 38, where we have choosen: 

 

k = 2.10
7
 [N/m

3
] 

b = 0.1 [m] 

 

and have used the following approximate relationship between tyre load Fz and half 

contact length a (see also [35]): 

 



 

 
37 

zFa 0011.0=  [m] 

 

with Fz in N.  

 

 

One observes the side force Fy to be a monotonous curve, reaching the saturation level 

Fy = µ.Fz  at α = arctan(1/θ). No slope reversal occurs, as observed in experimental 
results. A similar behaviour is observed for the longitudinal force. Corresponding trail 

and aligning torque are shown in figure 39. 

The aligning torque reaches a peak at α=arctan (1/(4.θ)), after which it reduces in absolute size 

to reach a zero value at α = arctan(1/θ). The aligning torque does not change sign with 

increasing slip angle in contrast to the earlier presentations of the aligning torque. 

The pneumatic trail is a monotonous function in α, starting with a nonzero slope at α = 0. 

Again, it tends to zero, which value is reached at α = arctan(1/θ). Its value at vanishing slip 

angle: 

 

Figure 38.: Longitudinal and cornering tyre characteristics, based on the brush model. 

 

Figure 39.: Pneumatic trail & aligning torque vs slip angle 
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is smaller then normally encountered (around 0.5a).  

We note here that the variation of the tyre forces in the tyre load Fz is different from 

experimental results. It can be shown that Fx and Fy vary proportionally in  zF  (i.e. no 

degressive relationship). The aligning torque varies proportionally with zz FF . .  

 

5.5.6. Brush model including carcass compliance 

The combined slip characteristics are shown in figure 40 in terms of the Fx - Fy polar 

plot and the longitudinal and lateral forces versus longitudinal slip. The polar plot is 

close to being symmetrical 

around Fx = 0. A similar 

symmetry turns out to be 

present in the olar plot of Mz 

vs. Fx. In order to remove this 

symmetry (compare with 

figure 30), one may include 

the carcass compliance, as 

indicated in figure 41. The 

carcass symmetry plane is 

connected to the undeformed 

symmetry plane with lateral 

and longitudinal springs. The 

longitudinal and lateral forces 

now contribute to the 

moment around point C 
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Figure 40.: Polar plot (Fx vs. Fy), and interaction between longitudinal forces and side 

forces, for the brush model. 
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Figure 41.: Including carcass compliance 
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(centre of contactarea with slip absent). 

It is assumed that the local behaviour in the contactarea for the deflected carcass can be 

described by the brush-model as described above. 

We have plotted Mz vs. Fx for both cases, without and including the carcass 

compliance, in figure 42. 

One observes that the symmetry is lost, but that the behaviour is still different from 

figure 30. Also the order of magnitude is different (lower) and the Magic Formula data 

show nonzero values for large longitudinal slip, being due to the residual torque, the 

nonzero values of the trail for large slip and especially the contribution of the 

longitudinal force in the aligning torque for combined slip (nonzero moment arm s of 

Fx contributing to Mz, see the Magic Formula expressions introduced earlier). The 

brush-model for deflected carcass necessarily leads to zero aligning torque for large 

slip, corresponding to the right and left ends of the graphs in figure 42. In between, 

however, the Fx vs. Mz graphs may be made more 

steep by tuning the carcass-compliance, especially by 

reducing the lateral carcass stiffness. 

  

5.6. The brush string model 

In [29], the brush model has been combined with a 

stretched string model, as indicated in figure 43. This 

model is referred to as the brush-string model, in 

contrast to the bare string model, applied extensively 

by Higuchi, see [16]. A bare stretched string model 

consists of an endless string which is kept under a 

certain pretension by a uniform radial force 

distribution, comparable with inflation pressures in 

real tyres. This string is elastically supported to the 

wheel centre plane. The deflection in the contact area 

can be described by two second order differential 

equations, of the form: 

 

 

α αα α

 

Figure 42.: Polar plot (Fx vs. Mz ), for nondeflected carcass (left) and deflected 

carcass (right). 

 
Figure 43.: The combined brush 

- string model 
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with lateral deflection uy, local shear force qy (sheer stress, integrated over de tyre 

width), relaxation length σy, and carcass stiffness per unit length ccy. Likewise in the 

longitudinal direction. For points of the string outside the contact area, qy is taken equal 

to zero. Under steady state conditions, one may derive for a rotationally symmetric 

elastic body representing a wheel and tyre rolling over a smooth surface that 
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with local sliding speed Vg, theoretical slip  ζy (likewise in x-direction). This means 

that, in the adhesion area, the x-derivative of the local deflection is described by the 

tyre slip. As observed earlier, in the sliding area, the total shear stress vector is 

described by the normal tyre stress through Coulomb’s law.  

The above equations describe the belt deflection and the contact phenomena, 

respectively. In fact, this distinction can be made for any model-based tyre handling 

analysis.   

As a result, one is left with a set of equations, that can be solved in a straightforward 

way. The extension of the bare - string model to the brush - string model leads to 

slightly more complex equations, but the basis is the same. It involves the inclusion of 

the tread stiffnesses k, denoted here as cp.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.: 44.: Shearforces, sliding speeds for small relaxation lengths, (κ,α) = (0.02, 0.04) 
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Fig.: 45.: Belt and total deflections for small relaxation lengths, (κ,α) = (0.02, 0.04)  

 

It is of interest to examine the tyre performance for varying treadstiffness where one 

would expect a ‘brush-type’ behaviour for much lower treadstiffness whereas a ‘bare 

belt-type’ behaviour is likely to occur for much larger treadstiffness. This has been 

investigated for the case of small relaxation length.  

Results for fixed small (combined-) slipvalues are shown in figures 44 – 45, restricting 

to the lateral properties only.  

The following observations can be made when the treadstiffness is reduced from very 

stiff (i.e. with a tyre behaving as a stretched string) to very soft (i.e. with a tyre 

behaving like a rigid wheel with brushes) with the slipvalues and tyreload unchanged. 

The total deflection remains more or less unchanged (at least in order of magnitude) 

whereas the beltdeflection is strongly reduced (and hence the tread deflection strongly 

increased). The shape of the total deflection over the contact area changes from rather 

smooth (dominated by beltdeflection) to a shape with a sharp transition between 

adhesion and rearward sliding region.  

 

For high treadstiffness, two sliding regions are found with the one at the front side of 

the contact area being very small (in our example about 3 % of the total contact area). 

With increasing treadstiffness, the transition of the sliding speeds between sliding and 

adhesion regions becomes less severe. The adhesion area is enlarged with softer treads, 

at the cost of higher sliding speeds in the rear sliding region. In other words, softer 

treads increase the cornering and braking potential of the tyre (e.g. wintertyres versus 

all-season tyres). 

 

 

6. Transient and dynamic performance 
For fast maneuvering of the vehicle, the rubber elements in the contact area will not 

follow the behaviour at the axle instantaneously. This phenomena, known as transient 

behaviour, can best be described by a first order equation: 
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for theoretical slips ζy,area and ζy,axle at the contact area and the axle, respectively, 

relaxation length σy and rolling speed Vr. The relaxation length is found to be well 

approximated by: 
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with lateral tyre slipforce Fy in slip angle α, and lateral carcass stiffness Ccy (describing 

lateral force vs. lateral deflection for a non-rotating tyre fixed to the ground). The 

relaxation length is in the order of 2 – 3 times half the contact length, for small slip 

angle. The above relationship indicates that the relaxation length depends on the slip 

angle.  

A similar discussion can be held for longitudinal transient behaviour, resulting in a 

similar equation.  

 

6.1. Belt dynamics 

The transient phenomena are relevant up to an input loading frequency of about 8 Hz. 

With higher frequencies, belt dynamics may become important. The first vibration 

modes are related to oscillations of the tyre belt as a rigid ring with respect to the wheel 

axle. Mainly the side wall stiffnesses are responsible for the tyre behaviour, with these 

rigid belt modes having frequencies up to about 90 – 100 Hz. Beyond these frequency, 

flexible eigenmodes start to arise, with belt deflections varying close to harmonically 

around the tyre circumference. In contrast to transient behaviour, these phenomena 

(rigid-ring and flexible ring deflections) are referred to as dynamic tyre behaviour. 

The in-plane and out-of-plane dynamic tyre behaviour has been extensively studied by 

Zegelaar, Maurice and Schmeitz (see list of references for their theses). For the in-

plane behaviour, rigid ring vibration modes are found in [35] for a free tyre for 

frequencies of about 48 Hz (circumferential, in phase with rim-rotations), 106 Hz 

(circumferential, out of phase with rim rotations) and 98 Hz (vertical translational 

modes). The first flexible mode starts to occur at about 92 Hz.  

Some standing tyre modes are shown in figure 46 (from [35]).  

 

 

For the out-of-plane behaviour, one observes, for a free tyre, rigid ring mode shapes at 

around 40 – 45 Hz (lateral, camber, yaw mode shapes). The frequencies for modes of a 

tyre standing on the road appear to be close to the modes of a free tyre.  

 

 

Figure 46.: Mode shapes (in-plane) for a standing tyre 
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The relevance of transient behaviour (up to about 8 Hz)  and dynamic tyre behaviour 

(beyond 8 Hz) is schematically shown in figure 47, taken from the MF-Tyre and MF-

Swift manual [19]: 

 

The situation of a 2D-road (in-plane) with unevenesses of arbitrary shape is important 

for the assessment of comfort, ride and durability. Dynamic in-plane behaviour of tyres 

has been tested extensively by hitting a cleat of certain shape. Such a cleat may be a 

trapezoidal one. The dynamic response of a tyre hitting a trapezoidal cleat with height 

of 10 mm is shown in figure 48. Both the time histories for vertical and longitudinal 

force, and the frequency contents of these signals (auto spectral density) are shown. 

One observes resonances at 80 – 90 Hz and 40 Hz. The first resonance corresponds to a 

mix of vertical and out of phase circumferential vibration, the second resonance is 

related to the in phase circumferential vibration.  
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Figure 47.: Main application areas for each tyre model data (from [19]) 
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Figure 48.: In-plane dynamic tyre response (from [32]) 

 

 

6.2. Tyre enveloping properties,  

We conclude that, in order to model dynamic tyre behaviour up to about 100 Hz, a rigid 

ring model for the belt is sufficient to include the relevant belt dynamics. On the other 

hand, a tyre has enveloping properties such that the load impact at the wheel axle for 

short wavelength road unevenesses can’t be described by a rigid belt only, and these 

properties need to be accounted for. In general, there are two alternative ways to 

describe dynamic tyre performance: 

 

1. with a rigid belt model, but including some filter model to account for the tyre 

enveloping properties 

2. with a full flexible belt model 

 

The first alternative has the advantage of being efficient with respect to the 

modelcomplexity. The second option has the advantage of not requiring a separate 

enveloping model at the cost of a relative large number of degrees of freedom. 

Examples of this second option are FTIRE (see [12] and [13], and RMODK (see [21]).  



 

 
45 

 

There are different ways to describe the geometric filter. The idea behind it is that a 

rigid belt model passing some effective road irregularity profile leads to the same 

quasi-stationary response at the wheel axle as a real tyre passing the real road profile. 

Let us consider the situation of a single step. The vertical position of the axle (the 

effective plane height) for fixed wheel load is depicted in fig. 49.  

 

This effective plane height looks like a combination of two quarter sine waves, each 

with a height equal to the half step height. This behaviour of the wheel axle position 

can be obtained by pushing a two-point follower system along a single quarter sine 

wave with height equal to the full step height. The centre point of this system will show 

the two sine wave behaviour, and the slope of the two-point follower appears to suit 

well as an effective  plane angle, as ‘seen’ by the tyre as a result of its enveloping 

properties. This two-point follower has a length of about 80 % of the tyre contact 

length, and is therefore described in [35] as the ‘contact patch’. This second single 

quarter sine wave is called the basic function resulting from the specific road profile 

(an upward step in this case). Such a basis function can be obtained for any road shape. 

Think of this as starting from a road profile as a superposition of single road steps. Not 

all of these steps are ‘seen’ by the tyre, but this problem can be accounted for. 

As observed by Zegelaar, the basic function (for a step change) primarily depends on 

the step height and not on the tyre load. On the other hand, the two-point follower 

length (the ‘shift’ in figure 49) does not depend on the road unevenesses but is 
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Figure 49.: Enveloping properties tyre 
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primarily related to the tyre load. As a result, one may use a dynamic tyre model, based 

on a rigid ring, where the road profile is replaced by the corresponding basic road 

profile, and where the shift is continuously adjusted to the changing tyre load. Such a 

model was developed at the Delft University of Technology, now well known under the 

name SWIFT (Short Wavelength Intermediate Frequency Tyre model), with links to 

many standard vehicle dynamics simulation tools such as ADAMS, SIMPACK, 

MADYMO (see for example references [1] and [19]).  

 

Schmeitz [32] improved the enveloping 

model by introducing the tandem model 

with elliptical cams, shown in figure 50. 

The tandem base length corresponds 80 

% of the contact length  Both elliptical 

cams follow the road profile. As a result, 

the effective plane heigth follows from 

the height of the midpoint of the tandem 

rod.  Note that the cams are only allowed 

to move in vertical direction (vertical 

sliders).  

It was shown in [32] that the shape of 

the elliptical cams is affected by neither 

the vertical load, nor the step height (in 

case of a step change).  

 

6.3. The rigid ring tyre model 

The concept of elliptical cams has further been extended to multi-track systems with a 

finite number of parallel tandems. In that way, oblique step inputs can be dealt with, or 

 

Figure 51.: Full SWIFT rigid ring tyre model 

  

 

Figure 50.: Tandem model with elliptical 
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longitudinal step inputs with a nonzero slip angle. We refer to figure 51 for the full 

SWIFT rigid ring tyre model. As discussed before, the tyre tread band is modelled as a 

rigid ring, i.e. a circular rigid body, suspended to the wheel rim through stiffnesses in 

radial and circumferential direction (in-plane) and in yaw, camber and lateral direction 

(out-of-plane). The rigid ring is linked to the ground through a contact model, usually 

based on transient and steady state magic formula descriptions. The residual stiffness is 

used to ensure that the overall quasi-static tyre stiffness is modelled correctly. 

 

 

7. Experimental assessment of tyre characteristics 
Tyre characterisytics are assessed, either on the road or in the laboratory. Tests on the 

road are realistic, but in general not reproducible. Tests in the laboratory on a drum 

with diameter in the order of 2 – 2.5 m are reproducible but not realistic regarding the 

surface conditions. Other possibilities in a laboratory are the inside of a drum (allowing 

in-door tests for a wet road) or a belt machine. The latter one has a steel belt, kept flat 

by hydrostatic bearings.  

An important problem is the temperature in combination with the fact that the slip 

conditions during tests to derive tyre characteristic data are, in general, not realistic. A 

sweep in slip angle between -5 and + 15 
O
 within some seconds leads to high 

temperatures, affecting these characteristics. Combined slip conditions, i.e. a fixed slip 

angle under braking torque may lead to erroneous tyre characteristics for the same 

reason. 

For an important parameters such as the cornering stiffness, a difference of 30 % has 

been observed. For the aligning torque, this variation may be even much larger. 

Carrying out measurements under conditions, comparable with the realistic driving 

circumstances, these differences can be brought back to the deviations that can be 

attributed to the change in road curvature. For a 2 m drum, this means an error of about 

16 % reducing to about 13 % for a 2.5 m drum.  

 

 

Figure 52.: Some experimental tyre facilities 
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