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ABSTRACT 
 
Present developments in intelligent vehicle performance and active chassis control rely to a large 
extent on basic vehicle dynamics, where for the analysis of extreme vehicle behaviour the nonlinear 
axle characteristics have to be taken into account. 
Smart vehicle analysis such as through multi-body tools, require multidisciplinary co-operation 
between experts from different backgrounds, such as communication technology, control engineering, 
electronics and human factors, with each of them necessarily having an understanding of vehicle 
dynamics. It is still a wonder that, with such a variety of skills, so many active chassis control systems 
reach the market successfully. 
This fundamental understanding is often overlooked because of the large amount of output as a result 
of a sometimes too detailed analysis. On the other hand, it doesn’t need an in depth knowledge of the 
basic vehicle dynamics equations, but can be obtained through graphical means with the data 
extracted from these simulation analyses. There are three different ways to graphically visualize the 
performance behaviour of a vehicle in relationship with vehicle and tyre parameters, with vehicle 
speed and steering input. Each of these graphical analysis tools will be treated in the paper and 
supported through simulation experiments. A first approach is given by the phase plane expressions, 
which illustrates the local and global vehicle performance near stationary points and in which areas 
can be identified related to this possible extreme performance. Quite a detailed treatment of this 
approach was originally given by Guo et. al. An understanding of these phase plane graphs is 
important in the discussion of vehicle response as preferred by the driver. A second well known 
approach is that of the handling diagram, originally introduced by Pacejka and extended for 
commercial vehicles with complex axle configurations by Winkler. This diagram is useful to identify 
stable and unstable stationary points, in relationship to different full nonlinear axle characteristics. It 
illustrates the relationship between steering, speed and road curvature, and it gives a basis to yaw-
stability of road vehicles, with the global stability performance further illustrated by the phase plane 
diagrams, referred to before. 
Finally, we will introduce a so-called stability diagram showing not only the stability (or lack of 
stability) of the vehicle performance but also the type of (in-)stability in dependence of the actual axle 
characteristics and vehicle speed. This refers to oscillatory or non-oscillatory limit behaviour, under- 
and oversteer and excessive understeer behaviour of road vehicles. 
The paper will discuss the use of these graphical means with reference to practical vehicle dynamics 
analysis.  
 
 
1. INTRODUCTION 
Vehicle analysis can be carried out at different levels of complexity. One might start with the well-
known one-track bicycle model, or one might start with a rather complex multi-body model including 
many details of the design. In this last case, one usually tries to validate the model based on vehicle 
tests like steady state cornering, step-steer or ramp-steer manoeuvring, random steer test, braking in a 
turn, etc. The performance as derived from such tests is to a large extent related to the basis vehicle 
characteristics which can be modelled by rather simple models such as the one-track model 
mentioned above. One is thus faced with the problem of having many degrees of freedom to be 
judged and/or many vehicle parameters to be tuned based on tests, the results of which can be 
interpreted through a limited amount of very essential overall vehicle properties.  
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It therefore makes sense to build an understanding of vehicle performance on simple models first and 
only then extend the model complexity, using the simple models in the validation process. In other 
words, if the overall vehicle characteristics are not validated properly, it makes no sense to examine 
vehicle or vehicle component performance in more detail.  
 
But even with the more simple models, the resulting mathematics may be rather complex and difficult 
to use for interpretation of vehicle performance, especially in case of nonlinear tyre characteristics 
(limit behaviour). For this reason, various graphical tools have been developed in the past, supporting 
the researcher or vehicle engineer in this interpretation. Diagrams turn out to be remembered more 
easily, and to be applied quicker than going through a rigorous mathematical analysis all the time.  
This paper deals with three of such graphical tools, the phase plane approach, the handling diagram 
and the so-called stability diagram. 
The practical use of these tools is indicated in table 1 below. 
 
Phase plane analysis 
(see for example 
Sachs, Pacejka, Guo, 
Smakman,..) 

Expression of solution curves in terms of the vehicle states, with direct 
indication of cornering energy, steady state solutions, local and global 
stability, overshoot phenomena and related damping (underdamped, 
overdamped), position of pole of yaw rotation, interpretation of axle 
slipangles 
 

Handling diagram 
(Pacejka, Winkler,..) 
 

Clarifying the occurrence of steady state solutions in relationship with input 
parameters such as steering angle, path curvature, vehicle speed and the 
vehicle nonlinear axle characteristics. Interpretation of local and global 
stability with respect to these input parameters, under- and oversteer 
performance. Especially the direct relationship of stability with the nonlinear 
axle characteristics is visualized using this diagram. 
 

Stability diagram 
 

This diagram, not published before, visualizes the local vehicle performance 
near the steady state conditions in relationship with the separate nonlinear 
normalized axle characteristics near these points, the vehicle speed and the 
wheelbase. Stability for oversteer or excessive understeer conditions is 
graphically presented here in a convenient way, including indication of 
oscillatory or non-oscillatory limit behaviour.   
 

Table 1.: Practical use of graphical tools to interpret vehicle handling performance 
 
Each of these tools is treated in more detail in sections 2, 3 and 4 respectively, with a discussion on 
the combined use in section 5. 
 
 
2. PHASE PLANE REPRESENTATION 
All of the analyses, reviewed in this paper, are based on the single track vehicle model, describing 
vehicle handling behaviour neglecting roll as well as drive- and brake forces. This means that either 
small friction coefficients are assumed between tyre and road, or a centre of gravity of the vehicle 
being low relative to the vehicle track width. With these assumptions, both the front and rear wheels 
can be taken as one system, with an overall lateral force, aligning torque, and slip angle obtained from 
the combined effect of left en right wheel. 
It means that tyre characteristics are 
replaced by axle characteristics.  
The slip angles for the front and rear axle 
are denoted by α1 and α2 . The total lateral 
forces for front and rear axle are denoted 
by Fy1 and Fy2, respectively. The aligning 
torques will be disregarded. The vehicle  
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          Fig.: 1.: Single track vehicle model 
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centre of gravity (c.o.g.) is positioned between both axles, at distances a and b from front and rear 
axle, respectively. The horizontal behaviour of the vehicle is described by a lateral velocity v at the 
c.o.g., a forward velocity u, a yaw rate r and a bodyslip angle β. 
This leads to the following well known equations (for small β): 
 
 21)(.).( yy FFrumruvm +=+=+ β��  

                   (1) 
 21 ... yyz FbFarJ −=�  

 
with vehicle mass m, and Jz the polar moment of inertia in z-direction (yaw moment of inertia), with 
the tyre forces depending on the slip angles in a nonlinear way (see also figure 2): 
 
 )( 111 αyy FF =     and  )( 222 αyy FF =              (2) 

 
The slipangles can be expressed in lateral speed and yawrate according to: 
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In its most general form, system (1) can be written 
as: 
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The two states y1, y2, plotted in a single diagram 
produce the so-called phase plane. The dynamic behaviour of the non-linear system can then be 
represented graphically in this phase-plane by a curve, denoted as a phase curve or trajectory.  
The state-vector y can be chosen in different ways. One would choose y = (v, r.ρ/V)T, following (1), 
with ρ the radius of gyration defined by 
 

2.. ρmJ z =     
 
and the total vehicle speed V. Guo refers to this 
phase plane as the energy phase plane for reasons 
made clear below.  Replacing (v, r) by the slip 
angles according to (3) one may choose y = (α1, 
α2)T. This second alternative has the advantage 
that these states are the key variables in the non-
linear right-hand side of (1), allowing results that 
can be directly related to yaw-instability. See [3] 
for an interpretation of certain isoclines (curves in 
the phase plane intersecting trajectories at points 
with a specific slope) in this case. Smakman [5] 

 
       Fig.: 2.: Lateral force vs. slip angle 

 
         Fig.: 3.: Normalized axle characteristics  
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was interested in reference regions in the plane span by the bodyslip angle and bodyslip angle rate. He 
exploited the fact that small bodyslip angle is one of the criteria of good handling and he defined 
these preferred regions for his design of integrated control of slip (wheel-by-wheel braking) and 
active suspension.  
For illustration, the three different phase plane presentations are shown in figure 4, for the normalized 
axle characteristics as depicted in figure 3 (lateral force, divided by the axle load), for constant 
steering angle 2o and vehicle speed of 70 km/h.  
 
 
 
 
 
 
 
 
 
 
Fig. 4.: Phase plane representations according to Pacejka, Smakman, Guo 
 
One observes three singular points in the outmost left picture, with the centre one being stable 
(attracting the trajectories). Trajectories being slightly apart from the line 
 

 
R
l−=− δαα 21            (4) 

 
for radius of curvature R and wheelbase l, tend not to approach this stable stationary solution, hence 
corresponding to a vehicle being lost in excessive yawing without additional steering control. A 
similar unstable behaviour is shown in the centre plot in the lower left corner. The area between the 
straight lines guarantees stability, and might be used as a preferred area for smooth vehicle 
performance. Finally, the right-hand plot shows trajectories moving oscillatory towards the steady 
state conditions. Points outside of the plot may still result in instabilities. 
 
Let us focus on this final representation, being 
extensively studied by Guo [1], and list the various 
possible interpretations of trajectories as presented in 
[1]. First of all, one may observe that the cornering 
kinetic energy Tc can be expressed in terms of the 
vehicle states and the translational kinetic energy Tt 
as: 
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Hence, the distance of trajectory points to the origin 
describes the square root of the normalised cornering 
energy as shown in figure 5, showing solution 
curves for two different ramp steer inputs. Observe 
the vortex at each curve, ending in the singular point 
corresponding to steady state vehicle performance, 
similar to the third plot in figure 4. 
 
According to Guo in [1], this energy phase plane also allows for graphical interpretation of the slip 
angles. The expressions (3) for the slip angles for both axles, imply that the families of straight lines x 
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         Fig. 5.: Energy phase plane 
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+ (a/ρ).y = const. and x - (b/ρ).y = const. correspond to constant values of α1 - δ and α2, being the  
angles of orientation of the local speed at front and rear axle, relative to the vehicle forward direction.  
These lines are shown in the energy phase plane in figure 6 for steady state steering angle δ = 4o (with 
solution curve again corresponding to a ramp steer response) and a certain combination of axle 
characteristics. Intersections of these lines through any point of the trajectory with the x-axis result in 
both slipangles, as shown in figure 6. This figure also shows that as soon as the maximum steering 
angle is reached, the front slip angle is exceeded by the steering angle at the front axle, after which it 
increases again beyond the steering angle. The rear slipangle increases all the way, except for the area 
where the yawrate shows an overshoot. The distance between steering angle (first increasing and then 
constant) and front slipangle will first increase and then decrease. To illustrate this in time, the 
resulting slipangles for a rampsteer input are shown versus time in figure 7. 

 
 
 

 
Along the lines α1 - δ = constant, the yawrate is increasing and the bodyslip angle is decreasing (in 
absolute sense). Consequently, the vehicle tends to obtain a spin motion. In the same way, along the 
lines α2 = constant, the vehicle obtains a drift motion (larger bodyslip with decreasing yawrate). 
 
Other observations are that the y-coordinate corresponds to the path curvature κIC: 
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with turn radius RIC, and that the cotangent of the argument of any point in the energy phase plane can 
be interpreted as the rotating length λ 
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defined as the distance between the vehicle c.o.g. and the projection of the centre of rotation of the 
vehicle central plane through the axle centres, see figure 8. 
For any point P (x, y) on a given trajectory, it is now easy to find the instant momentary pole of the 
vehicle planar motion from: 
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           Fig. 6.: Front and rear slip angles.  

 
      
 
 
 Fig. 7.: Slip angles, ramp steer input 
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In the first quadrant, the pole will be 
somewhat behind the vehicle c.o.g. 
whereas in the second quadrant, it 
will be somewhat in front of the 
vehicle c.o.g. 
 
With the trajectory moving upward, 
the yawrate increases without 
significant change in bodyslip angle, 
i.e. the radius of curvature is 
decreasing and the vehicle is 
moving into a steady state curve, 
possibly in the shape of a vortex. 
Similarly, with the trajectory 
moving upward, the vehicle is 
heading for a larger curve radius.  
.  

Fig. 9.: Energy phase plane respresentations for an understeered vehicle at low speed (left) 
             and a stable oversteered vehicle  
 
It is clear that the shape of the vortex near the steady state point defines the overshoot in both 
bodyslip angle and yawrate. As we know, such overshoot is not present for all possible situations. For 
example, a stable oversteered vehicle (velocity not 
exceeding the critical speed) or an understeered 
vehicle with low speed  will approach the ciritical 
point directly, without spiralling around it first. For 
illustration, these two cases are shown in figure 9. 
We’ll address these separate cases in section 4 in 
more detail. Note that the steady state value for the 
bodyslip angle β for the low speed understeer case 
remains positive. 
 
We close this section with an outline of the different 
octants I-1, I-2, II-1,…,IV-2 formed by the four 
quadrants I, II, III, IV, with each of them divided 
further by the diagonal lines α1 + δ = 0 and α2 = 0, 
see figure 6 and figure 10. We refer to [1] for further 
details. 
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Fig. 8.: Rotating length and momentary pole of rotation 
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Fig. 10.: The eight zones in the energy  
              phase plane 
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For a positive steering angle input, the phase plane trajectory will remain in quadrants I and II unless 
the vehicle becomes unstable. Just at the border of these two quadrants, the bodyslip angle changes 
sign. The quadrants III and IV are just similar to quadrant I and II, but for negative steering angle (and 
negative yawrate r). Within the zone, consisting of I-2 and II-1, the rotating length λ lies between 
both axle positions. Outside this zone within the first and second quadrant, the momentary pole of 
rotation has been moved further away in either the forward direction or the rearward direction, 
corresponding to the vehicle motion.  
These observations are summarized in table 2, below. 
 
Octant Front slipangle Rear slipangle Rotating length Bodyslip angle Yawrate 
I-1 ≥ δ ≤ 0 ≥ b ≥ 0 ≥ 0 
I-2 ≥ δ ≥ 0 0 ≤ λ ≤ b ≥ 0 ≥ 0 
II-1 ≥ δ ≥ 0 -a ≤ λ ≤ 0 ≤ 0 ≥ 0 
II-2 ≤ δ ≥ 0 ≤ - a ≤ 0 ≥ 0 
III-1 ≤ δ ≥ 0 ≥ b ≤ 0 ≤ 0 
III-2 ≤ δ ≤ 0 0 ≤ λ ≤ b ≤ 0 ≤ 0 
IV-1 ≤ δ ≤ 0 -a ≤ λ ≤ 0 ≥ 0 ≤ 0 
IV-2 ≥ δ ≤ 0 ≤ - a ≥ 0 ≤ 0 
Table 2. : The eight zones in the energy phase plane 
 
 
3. HANDLING DIAGRAM 
For further interpretation of these energy phaseplane representations of vehicle behaviour, we need 
some tool to illustrate the occurrence of steady state solutions and their stability, in terms of changing 
axle characteristics, input steering angle δ and vehicle forward speed V. Such a tool exists and is 
referred to as the handling diagram, see [3].  
Following (1), steady state solutions of the one-track vehicle model satisfy  
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with total centrifugal force K=m.u.r, acceleration of gravity g and path radius R = RIC. 
Hence, the normalised axle characteristics (lateral force, divided by the axle load) front and aft 
coincide: 
 
 )()( 2211 αα yy ff =       

 
The lateral acceleration K/mg (in g) depends on the relative path curvature (a+b)/R = l/R in a linear 
sense: 
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For linear axles with cornering stiffnesses CF1 and CF2 respectively, it is well known that the vehicle 
understeer/oversteer performance can be described by the following relationshp: 
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with coefficient η, referred to as understeer gradient. For such a linear vehicle, the definitions of 
understeer behaviour: 
 

1. A vehicle is understeered if the steering angle has to be increased for increasing vehicle 
forward speed to negotiate the same curve. 

2. A vehicle is understeered if the front axle slip angle exceeds the rear axle slip angle under 
steady state conditions: α1 > α2 . 

3. A vehicle is understeered if the understeer gradient η>0, i.e. the normalised axle cornering 
stiffness front is exceeded by the normalised axle cornering stiffness aft. 

4. A vehicle is understeered if the steering wheel gradient ∂δ/∂ay > 0 
 
coincide. Graphically, expression (5) can be plotted as shown in figure 11, referred to as the handling 
diagram (see [3]).  

Figure 11. :The handling diagram for linear (left) and nonlinear (right) axle characteristics.  
 
The left picture corresponds to linear axle characteristics. The right-hand picture is the extension to 
nonlinear axle characteristics (schematic) in case of a vehicle being understeered for small lateral 
acceleration, and restricted to positive steering angle. To explain this, we invert the normalized axle 
characteristics: 
 
 ))](([)( yiyiyi afinvag α=   ; i=1,2             (7) 

 
These functions gi are multivalued functions in the lateral acceleration ay (in g’s, i.e. K/(mg)), where 
both single-valued branches may be treated separately. 
It follows using (4) and (7) that: 
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This function h(ay) is directly related to the vehicle axle characteristics, and will therefore show 
different shapes for vehicles being initially (linear range) understeered or oversteered. Compare figure 
12 where handling diagrams are plotted for two different sets of normalized axle characteristics. 
Observe the change in orientation of the handling curve for both cases.  
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Figure 12. :Handling diagrams for different sets of axle characteristics.  
 
Let’s start with the upper left plot of figure 12. The corresponding axle characteristics were used to 
derive the phase plane plots in figure 4. Remember that we derived three different steady state 
solutions in this case. This diagram, referred to as part A of the handling diagram, will be merged 
with another diagram having the ordinate K/(mg), expressing this lateral acceleration in terms of path 
curvature l/R according to equation (5). That means that this second diagram, referred to as handling 
diagram-part B (ay versus curvature), is a family of straight lines (u-lines) with the slope proportional 
to the square of the vehicle speed. According to (4) both diagrams combined produce the steering 
angle as the horizontal distance between handling curve and u-line. Both parts A and B are shown in 
figure 13, which we’ll discuss here step by step. 
Assume a path-radius R1 (i.e. path curvature l/R1) and a vehicle forward speed u1. That means that the 
point (l/R, K/(mg)) is lying on the straight line with slope (u1

2/(g.l)). Because of (4), applying a 
steering angle  δ means that this u-line is shifted to the left over a horizontal distance δ. 
 
As a result, the steady state solution I is found as the intersection of part A and the shifted u-line, and 
lying in the understeer region. For very small speed u, the corresponding straight line is almost 
coinciding with the horizontal axis, and consequently, the necessary steering angle to reach the origin 
equals l/R (the Ackermann angle). For the curve in figure 13 (similar to the curve in the left-top 
picture in figure 12) three steady state solutions arise, denoted as I, II and III as long as δ is not too 
large, confirmed by our earlier observation regarding the phase plane plot 4. For a certain value of δ, 
δ = δS the point S is reached and beyond this value, the number of three steady state solutions drops 
down to 1. This situation corresponds with the case where too excessive steering yields instability.  
Summarizing, the handling diagram relates the steady state solutions to input variables R(vertical 
lines in the right half of the handling diagram), steering angle δ (horizontal shift of the u-line), vehicle 
speed (u-lines) and the axle characteristics (the S-shaped curve, including the additional branches 
resulting from the fact that the functions gi in (7) are multivalued). Clearly, these variables cannot be 
chosen independently.  

 

linear nonlinearlinear nonlinearlinear nonlinear
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Now assume the steering angle δ to be chosen below δS but close to it, and consider the resulting 
steady state solution I. 
Slightly increasing the lateral 
acceleration ay implies 
increase of the steering angle 
in order to reach a new steady 
state solution. That means that 
I is stable as long as it is 
situated below S. In the same 
way one may conclude that, 
for the steady state solution II 
lying above S, increase of ay 
would involve reduction of 
steering angle δ yielding a 
self-reinforcing effect towards 
smaller curve radius and 
larger lateral acceleration, i.e. 
corresponding to yaw-
instability.  
These results can be proved 
rigorously, i.e. solutions on 
the main branch become 
unstable as soon as the slope of the tangent to this curve in the solution point becomes smaller than 
the slope of the u-line (shifted over δ) concerned. This means that the path curvature where δ 
becomes maximal at the vehicle speed u considered has been exceeded. This kind of instability can 
only occur if the vehicle behaves oversteered, i.e. when the slope of the handling curve is positive. 
Decreasing of the speed u leads to increase of the lateral acceleration where the steering angle is 
maximal. Likewise, instability occurs in point III. 

 
Figure 13.: Handling diagram in total, combining parts A and B (see text) 

I

II

IIII

II

III

 
Figuur 14.: Energy phase plane, axle characteristics cf.  
                     figure 12 (top), with u = 75 km/h and δδδδ = 1.5o 
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Figure 15.: Possible shapes singular points 
 

We have blown up the right-hand picture in figure 4 in figure 14, including all the three steady state 
points for some combination of vehicle speed and steering angle. One clearly observes some 
trajectories not approaching the stable steady state point. The dashed lines correspond to the so-called 
separatrices (manifolds), separating the solution curves approaching the unstable outmost steady state 
points, but never reaching them. On the other hand, all solution curves within the intermediate area 
approach these steady state conditions and determine the global stability of this point. Consequently, 
the unstable steady state points (points II and III in figure 13) determine the domain of attraction of 
steady state point I 
 
 
4. STABILITY DIAGRAM 
This section will focus further on the stability of steady state points in relationship to the slope of the 
normalized axle characteristics, at the steady state values for the slip angles α1 and α2, respectively. 
Let us return to the set of equations in its general form: 
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Steady state solutions satisfy 
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These steady state solutions are points in the (energy) phase plane as introduced in section 2, denoted 
as equilibrium points or singular points, since the time derivatives of both y1 and y2 vanish in these 
points. In terms of the phase plane, one observes trajectories that move away, form closed cycles or 
approach these singular points, respectively. 
Under mild conditions one can prove that, near such a singular point, the solutions of the non-linear 
system show the same qualitative behaviour as solutions of the linearised system around these points: 
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with Jacobian matrix )(

0
yF ′ . It follows that the behaviour near a singular point can be determined 

from the knowledge of the eigenvalues of this Jacobian matrix. These eigenvalues, denoted as λ1, λ2 
are either real or complex conjugated. The possible shapes of the singular points are summarized in 
figure 16. Except for the saddle point and the centre, each type may be connected to a stable steady 
state points (trajectories moving towards this 
point) or an unstable steady state point 
(trajectories moving away from this point). 
 
Saddle points correspond to unstable 
stationary solutions, since trajectories may 
pass this point at close distance, but then move 
away never to return. Nodes and stars 
correspond to solutions where the stationary 
conditions may be approached in a 
nonoscillatory (i.e. overdamped) way. On the 
other hand, a focus means oscillatory (i.e. 
underdamped) performance. Compare with 
figure 7, where a ramp steer steering input is 
followed by an oscillatory yaw behaviour 
approach a steady state cornering situation. 
This is a typical vehicle behaviour for most 
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understeered vehicles with not too low speed. One recognises the stable focus and the two unstable 
saddle points in figure 14, and the stable two-sided (two-tangent) node in figure 9. 
 
Figure 16 shows the time history of the yawrate for a ramp steer input for the case of normal 
understeer, understeer for low speed, and stable oversteer, respectively. Only for the first choice of 
vehicle input and axle characteristics, one observes an overshoot, i.e. a stable focus in the phase plane. 
In both other situations, the yawrate approaches the steady state value in a monotonous way, 
corresponding to a node. 

Figure 16.: Yawrate vs. time for axle characteristics cf. figure 12 (top: first two plots, bottom:  
                     last plot, for (u, δδδδ) = (80 km/h, 1.5o), (35 km/h, 4o) and (30 km/h, 2o), respectively) 
 
Stationary solutions are related to the axle slipangles 
for which the normalized axle characteristics 
coincide (see figure 17 for an example) and (4) is 
satisfied. The types of singular point as shown in 
figure 15 depend on the slope of the normalized axle 
characteristics at these slipangles, and one may 
derive the diagram shown in figure 18, referred to as 
the stability diagram. Both positive and negative 
values of these slopes are included in this diagram 
where, obviously, only small negative values are 
realistic (indicated with a box). 
A remarkable symmetry is apparent in this diagram. 
Two hyperbolic curves separate the regions where 
stationary points are saddle points and where they 

are nodes. Above the diagonal from 
bottom right to top left, these nodes are 
stable, whereas below this diagonal, 
these nodes are unstable. 
A band in between (from bottom left to 
top right) contains the oscillatory 
singular points, with the stable points 
above the diagonal referred to earlier. 
The hyperbolic curves depend on the 
ratio of speed and acceleration of gravity 
times wheelbase. Hence, reducing speed  
means that points in the ‘focusarea’ may 
end up in the ‘node area’, as we 
observed before in figure 16. 
Let us consider the first quadrant. The 
lower half (the first octant) corresponds 
with the normal understeer behaviour, 
apparently consisting of a part with 
oscillatory behaviour near the steady 
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Figure 17.: Normalized axle characteristics  
                    coincide under steady state  
                    conditions. 
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Figure 18.: The Stability Diagram 
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state solution and a part with monotonous approaching solution curves. The second octant consists of 
two parts also, with the shaded part being the stable region and the nonshaded part corresponding to 
instability. Indeed, with the speed decreasing, the shaded region expands demonstrating the improved 
stability. Note that there also exists a stable region in the fourth quadrant, again consisting of a ‘focus-
region’ and a ‘node region’. This stable region corresponds with the case of excessive understeer, 
where the vehicle speed needs to exceed a certain minimum value to guarantee stability.   
 
 
5. DISCUSSION ON VISUALIZATION TOOLS  
In the preceding sections, we have reviewed existing graphical tools and introduced a new one to 
visualize the fundamental vehicle handling performance in relationship to vehicle parameters and 
nonlinear axle (tyre) characteristics. How can it help us in such dynamic handling analyses, especially 
when we are faced with more complex simulation models?  
Important is the performance near steady state conditions. Think about special manoeuvres as a 
vertical disturbance during cornering, a ramp steer input, etc. A first step might be to plot the solution 
curve in the energy phase plane. This already gives an understanding near the stationary points, the 
performance in terms of drifting and spinning, and the varying position of the momentary pole of 
rotation (rotation length). Manoeuvring for varying vehicle design parameters leads to different 
trajectories and therefore different an interpretation of the impact of these variations on handling 
performance along the guidelines as discussed in section 2. 
The handling diagram can be derived from the steady state testresults up to the limit behaviour 
(steering angle versus lateral acceleration) or directly from the nonlinear axle characteristics. 
Variation of curvature, speed, steering angle, axle characteristics leads to different stationary solutions 
which can be derived from this handling diagram. Also the (local and global) stability can be 
discussed from this diagram.   
Finally, the stability diagram tells us if and why the performance near the stationary conditions is 
oscillatory or not, if it is stable or unstable, and to what extent this is effected by the vehicle speed. 
 
The tools will help the vehicle engineer to separate the basic fundamental vehicle performance from 
the higher order dynamic vehicle results. 
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